- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Calli, Berk (1)
-
Chatterjee, Sreejani (1)
-
Doan, Duc (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This paper presents a novel strategy to train keypoint detection models for robotics applications. Our goal is to develop methods that can robustly detect and track natural features on robotic manipulators. Such features can be used for vision-based control and pose estimation purposes, when placing artificial markers (e.g. ArUco) on the robot’s body is not possible or practical in runtime. Prior methods require accurate camera calibration and robot kinematic models in order to label training images for the keypoint locations. In this paper, we remove these dependencies by utilizing inpainting methods: In the training phase, we attach ArUco markers along the robot’s body and then label the keypoint locations as the center of those markers. We, then, use an inpainting method to reconstruct the parts of the robot occluded by the ArUco markers. As such, the markers are artificially removed from the training images, and labeled data is obtained to train markerless keypoint detection algorithms without the need for camera calibration or robot models. Using this approach, we trained a model for realtime keypoint detection and used the inferred keypoints as control features for an adaptive visual servoing scheme. We obtained successful control results with this fully model-free control strategy, utilizing natural robot features in the runtime and not requiring camera calibration or robot models in any stage of this process.more » « less
An official website of the United States government
